

IT 09 017

Examensarbete 45 hp
Maj 2009

CellMC
An XSLT-based SBML Model Compiler for Cell/BE

and IA32

Emmet Caulfield

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

CellMC: An XSLT-based SBML Model Compiler for
Cell/BE and IA32

Emmet Caulfield

In-silico simulation of chemical reactions is playing an increasingly important rôle in
furthering understanding of cellular biochemistry, simulating in-vivo chemical reactions
such as genetic and enzymatic action, and giving rise to the field of computational
systems biology.

The Systems Biology Markup Language (SBML) has been defined to provide a standard
way to describe models of biochemical reaction networks, and the Stochastic
Simulation Algorithm is an effective and popular method for simulating systems with
many reacting species, which cannot be simulated using most numerical solution
techniques whose time-complexity grows exponentially with number of chemical
species.

CellMC, an open source program generator based on XML Stylesheet Language
Transformation (XSL-T), is presented and evaluated. It produces a SIMD-ised and
parallelised executable realising SSA for any homogeneous biochemical model
expressed as SBML. The compiler works on a variety of Cell/BE and IA32 platforms,
including a Sony PlayStation 3 cluster. The IA32 executables produced are shown to
outperform others in the literature by a considerable multiple, and they, in turn, are
outperformed by those on Cell/BE.

Tryckt av: Reprocentralen ITC
IT 09 017
Examinator: Anders Jansson
Ämnesgranskare: Per Lötstedt
Handledare: Andreas Hellander

Acknowledgements

I am profoundly grateful both to my supervisor, Andreas Hellander, for his generous
encouragement, genial patience, and boundless enthusiasm; and to Per Lötstedt for
his valuable input and cordial advice.

To my parents, Jim and Phil Caulfield, I am deeply indebted for their unstinting
love and support.

i

ii

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Limitation of Deterministic Macroscopic Models 1

1.1.2 The Chemical Master Equation 1

1.1.3 The Stochastic Simulation Algorithm 2

1.2 Motivation . 2

2 The Stochastic Simulation Algorithm 5

2.1 Basic Algorithm . 5

2.2 Variations of Homogeneous SSA . 6

2.2.1 Next Reaction Method . 8

2.2.2 Optimised Direct Method . 8

2.2.3 Sorting Direct Method . 8

2.2.4 Logarithmic Direct Method 8

3 Biochemical Model Systems 11

3.1 Decay Dimerisation Reaction . 11

3.2 Metabolite-Enzyme Reaction . 12

3.3 E. Coli Heat-shock Reaction . 12

3.4 Circadian Rhythm . 12

4 Platforms 13

4.1 The Cell Broadband Engine . 13

4.1.1 Sony PlayStation R©3 . 14

4.1.2 Sony PlayStation 3 Cluster 15

4.1.3 IBM QS22 . 15

4.2 x86 Platform . 15

4.2.1 Modest PC Workstation . 15

4.2.2 AMD Opteron
TM

Multiprocessor 15

4.2.3 Intel Xeon R© Multiprocessor 15

iii

5 CellMC Compiler 17

5.1 Basic Operation . 17

5.1.1 Pass 1 . 17

5.1.2 SBML Model Transformation 17

5.1.3 Pass 2 . 17

5.2 Output . 18

5.3 Implementation . 18

5.3.1 Parallel Pseudo-Random Number Generation 18

5.3.2 Floating-Point Precision . 19

5.4 Cell/BE Platform Specifics . 19

5.4.1 Intrinsics . 20

5.5 IA32 Platform Specifics . 20

5.5.1 A Re-entrant SIMD-oriented Fast Mersenne Twister 20

5.5.2 SIMD log() . 20

5.6 Code and Build Management . 21

6 Results 23

6.1 Correctness of Results . 23

6.1.1 Decay Dimerisation . 23

6.1.2 Metabolite Enzyme . 23

6.1.3 E. Coli Heat-shock Reaction 24

6.1.4 Circadian Rhythm . 24

6.2 Performance . 25

6.3 Comparison of Results . 26

6.3.1 Comparison on PC Platform 26

6.3.2 Comparison with GPU & FPGA 27

6.4 Scalability . 28

6.4.1 Cell/BE . 28

6.4.2 x86 . 30

6.5 Platform Comparison . 31

7 Conclusions & Future Work 33

7.1 General Conclusions . 33

7.2 Future Work . 33

iv

A Model Details 39

A.1 Notation . 39

A.2 Decay Dimerisation Reaction . 40

A.2.1 Reaction Equations . 40

A.2.2 Model Parameters . 40

A.2.3 Initial Copy Numbers . 40

A.3 Metabolite-Enzyme . 41

A.3.1 Reaction Equations . 41

A.3.2 Model Parameters . 41

A.3.3 Initial Copy Numbers . 41

A.4 E. Coli Heat-shock Reaction . 42

A.4.1 Reaction Equations . 42

A.4.2 Model Parameters . 44

A.4.3 Initial Copy Numbers . 45

A.5 Circadian Rhythm . 45

A.5.1 Reaction Equations . 46

A.5.2 Model Parameters . 46

A.5.3 Initial Copy Numbers . 47

B CellMC User Guide 49

B.1 Overview . 49

B.2 Command-line Options, Switches, and Flags 49

B.3 Output Metadata Description . 50

B.4 Example Operation . 52

v

1. Introduction

1.1 Background

1.1.1 Limitation of Deterministic Macroscopic Models

Conventional macroscopic quantitative chemical reaction models are systems of de-
terministic nonlinear ODEs for the concentrations of the compounds of interest. In
cellular biochemistry, however, the volume of a cell may be of the order of 10−15l,
the number of reacting molecules (copy number) is correspondingly small — hun-
dreds or even tens of molecules — and the bulk assumptions of such deterministic
macroscopic models fail [1, 15].

Amongst the important phenomena that deterministic models fail to capture are
multistability (switching) and stochastic resonance, causing the models to fail to
switch or oscillate as they should [5, pp.13–14].

1.1.2 The Chemical Master Equation

On the mesoscale, the chemical master equation (CME), a time-dependent difference-
differential equation for the probability distribution of the copy numbers of each dis-
tinct molecule, or species, can be rigorously derived from molecular kinetics — in a
“bottom up” fashion — under reasonable assumptions that the system is well-stirred
and in thermal equilibrium [9].

Equation 1.1 shows the general form of the chemical master equation for a system of
N species and M reactions, Rµ (µ ∈ {1 . . .M}), where: n is an integer population
vector of length N of the copy numbers of the species; each reaction has a probability
rate constant, cµ, a vector, ν, of length N that specifies the change in the population
for reaction µ (such that, if reaction µ occurs when the population is n, the new
population will be n + νµ), and a function hµ(n) : NM → N, which gives the
number of combinations of the reactant molecules for reaction µ when the system is
in state n; as usual, t is time; and finally, P is the probability distribution function
of interest, P(n, t|n0, t0) being the probability that the system will be in state n at
time t given that it is in state n0 at time t0.

The “combination counting” function, hµ(n) is the only term whose meaning is not
immediately clear, but it is surprisingly simple: for a reaction S1 + S2 → S3, it
is simply the product n1n2, where n1 and n2 are the copy numbers of S1 and S2

respectively, since this is the number of combinations of ways that a S1 molecule
can meet a S2 molecule.

∂

∂t
P(n, t|n0, t0) =

M∑
µ=1

(cµhµ(n− νµ)P(n− νµ, t|n0, t0)− cµhµ(n)P(n, t|n0, t0))
(1.1)

1

Numerically, the CME is found to be much more accurate than equivalent macro-
scopic models, but suffers from the “curse of dimensionality”: if there are 61 partic-
ipating species, as there are in the heat-shock reaction of E. coli (§ 3.3), the system
of equations is 61-dimensional. Although techniques exist for approximating and
reducing the dimensionality of high-dimensional models, they ultimately still suffer
from this limitation. [21]

1.1.3 The Stochastic Simulation Algorithm

Rather than trying to solve the CME for a system, Gillespie’s stochastic simulation
algorithm (SSA) is a Monte Carlo technique which numerically simulates the under-
lying Markov process. It is valid for low copy numbers and does not suffer from the
curse of dimensionality [8].

In short, SSA is the predominant method of mesoscale stochastic simulation in
computational cellular biochemistry; it is important for three reasons:

• Microscale (molecular dynamics, biophysics) simulations are completely in-
tractable for systems of interest at the biochemical level.

• Other mesoscale methods, based on the CME (or approximations to it) suffer
to a greater or lesser degree from the curse of dimensionality and can only be
applied to relatively simple systems.

• Deterministic macroscale simulations do not capture crucial stochastic phe-
nomena (e.g. the stochastic resonance exhibited by the circadian rhythm model
of § 3.4)

SSA is described in detail in Chapter 2.

1.2 Motivation

The desire for speed for SSA simulations is not new, and is motivated by the desire for
a better understanding of ever more complex cellular biochemistry, both to further
human knowledge, and for applications such as modeling cancer gene expression.

In the search for speed field-programmable gate arrays (FPGAs) have been used
to implement SSA in the last few years and, although it is a promising idea, it
is not clear exactly how well these perform in practice with realistic biochemical
models. [20, 26, 31, 28, 30, 29]

Most recently, but after this project was underway, GPUs have been used for the
first time to implement SSA, and with considerable success [19].

Originally, the project was intended to be a vehicle for comparing the Cell/BE
processor used in the Sony PlayStation 3 , with respect to SSA, to conventional
desktop processors — such as the diverse Intel and AMD families of “x86” processors
(collectively referred to here as IA32) used in desktop PCs — in order to evaluate
how well-suited Cell/BE is to SSA.

2

Obviously, it would not be valid to compare hand-tuned, SIMD-ised code for the
Cell/BE with a näıve implementation on the PC that did not take advantage of the
SSE vector instructions or multiple cores, so an optimised PC implementation was
deemed necessary.

As it became clear that the PC code, too, was very fast compared to other SSA
implementations, including the popular StochKit [17], the project evolved into a
dual-platform model compiler using SBML — an XML-based standard for repre-
senting chemical models — as input.

CellMC works by transforming an SBML model to C via XSL-T, then compiling the C
code with gcc. Although simple in principle, and relatively simple on IA32, it is more
challenging on Cell/BE due to the more involved compilation process and complex
binary format. Nevertheless, it would not be difficult to extend CellMC to include
support for other architectures, such as GPUs and future multicore processors, by
adding an additional XSL-T transformation and support for the prescribed build
chain.

It is hoped that the release of CellMC on SourceForge, its speed, and its ease-of-use
will encourage the broader computational systems biology community to use it.

CellMC is an open-source project, registered and hosted at SourceForge.net — http:
//cellmc.sourceforge.net/

3

http://cellmc.sourceforge.net/
http://cellmc.sourceforge.net/

4

2. The Stochastic Simulation Algorithm

2.1 Basic Algorithm

The direct method (DM) and the less efficient first reaction method (FRM) were first
presented by Gillespie in 1976 [8].

Here, DM and FRM are described in a somewhat unconventional manner that seeks
to avoid certain implicit assumptions in their conventional presentations. For ex-
ample, it is usual to show the timestep computed as τ ← − ln(λ)/Ũ(0, 1), where
Ũ(0, 1) denotes a value drawn from a uniform distribution on (0, 1), but this presup-
poses the inversion method of generating exponentially distributed numbers (what
is wanted) because it is assumed that a cheap source of uniformly, but not ex-
ponentially, distributed random numbers is available. Similarly, the conventional
presentation tacitly assumes that the computation of reaction propensities and their
summation are performed iteratively, an a priori assumption that is better avoided
if a parallel implementation is intended1

If, as before, we assume M reactions involving N chemical species, the state of
the system at time t is a vector, X(t)

i = {x(t)
1 , x

(t)
2 , . . . , x

(t)
N } ∈ NN where each x

(t)
i

represents the number of molecules of chemical species i present at time t, beginning
with a stipulated state X(0). An N ×M stoichiometry matrix over the integers2,
V , wherein Viµ is the increase or decrease in copy number of species i due to the
occurrence of reaction µ, making the columns V·µ exactly the νµ vectors in the CME
(1.1).

The reaction propensities may be viewed as a map h∗ : NN → (R+)M from the
current state to a vector of non-negative real numbers having one element for each
of the M reactions. In essence, this is a vector of all cµhµ(n) in the CME (1.1),
marked with a “∗” as a reminder that it is not quite the same, having had cµ “rolled
in”.

If the reaction propensities are stochastic, time evolution of X(t) is a continuous time,
discrete-space Markov chain, which implies that the interval between reactions is
exponentially distributed and thus the probability of a particular reaction occurring
in a given interval is Poisson. Gillespie motivates this physically from a hard-spheres
model of kinetic chemistry in detail [8, 9].

Now, a single trajectory can be described by Algorithm 1, where we try not to
presuppose any optimisations whatever by presenting the First Reaction Method [8,
pp.419–422] (FRM) abstractly.

A random number drawn from an exponential distribution with parameter λ is
denoted Ẽ(λ), and one drawn from a uniform distribution between α and β is denoted
Ũ(α, β).

1It turns out that this is the way we do it in practice, but it is arguably better not to assume it
so soon.

2Very often a sparse matrix over {−1, 0, 1} in practice

5

Algorithm 1 First Reaction Method
Begin at time 0: t← 0
Initialise the population vector: X(0) ← {x(0)

1 , x
(0)
2 , . . . , x0

N}
while t < tstop do

Pick random timesteps: τκ ← Ẽ(h∗κ(X(t))) ∀κ ∈ {1 . . .M}
Identify first reaction: ∃!µ : τµ < τκ ∀κ 6= µ
Update population: X(t+τµ) ← X(t) + νµ
Update timestep: t← t+ τµ

end while

Although Gillespie does not present it as such, the more usual Direct Method of
Algorithm 2, which he presents first, may be viewed as optimisation of FRM.

Algorithm 2 Direct Method
Begin at time 0: t← 0
Initialise the population vector: X(0)

i = {x(0)
1 , x

(0)
2 , . . . , x0

N}
while t < tstop do

Sum propensities: λ←
∑M

µ=1 h∗µ(X(t))
Pick random numbers: u← Ũ(0, λ), τ ← Ẽ(λ)
Pick reaction: ∃!µ ∈ {1 . . .M} :

∑µ−1
κ=1 h∗κ(X(t)) < u <

∑µ
κ=1 h∗κ(X(t))

Update population: X(t+τ) ← X(t) + νµ
Update timestep: t← t+ τ

end while

A more conventional presentation of the direct method, which assumes the availabil-
ity of a cheap source of uniform random numbers on (0, 1), but not exponentially
distributed numbers, and that certain operations are performed iteratively is given
in Algorithm 3.

In reality, of course, the implementation is never quite as obtuse as Algorithm 3,
which shows every possible iteration. For example, in practice as in Gillespie’s
original presentation of DM, only those populations actually affected by the executed
reaction are updated.

2.2 Variations of Homogeneous SSA

In the conventional direct method, all propensities are recalculated at each timestep,
a full summation of these propensities is performed to compute the propensity sum,
and a linear search is conducted to determine which reaction occurs given a random
number on (0, λ). In FRM, each reaction is assigned a putative time, and the reaction
occurring soonest is executed, obviating the need for propensity summation, but
necessitating a search for the smallest reaction time.

Without fundamentally changing the method, propensity recalculation may be lim-
ited to only those reactions involving species which have changed. This is easily
achieved with a dependency graph. Similarly, more efficient search strategies than

6

Algorithm 3 Direct Method
I Initialise variables:
t← 0
for i← 1 : N do
Xi = X

(0)
i

end for
while t < tstop do
I Compute and sum reaction propensities:
λ← 0
for µ← 1 : M do
pµ ← h∗µ(X(t))
λ← λ+ pµ

end for
I Pick reaction selector and timestep
u← λŨ(0, 1)
τ ← − ln(λ)/Ũ(0, 1)
I Determine which reaction was picked
µ← 1
while u > 0 do
u← u− pµ
µ← µ+ 1

end while
I Update populations:
for i← 1 : N do
X

(t+τ)
i = X

(t)
i + Viµ

end for
I Update timestep:
t← t+ τ

end while

a simple linear search can be applied, whether that search is for a timestep or a
reaction.

Since all methods only update only those populations affected by a reaction (rather
than “adding on zeros”), SSA optimisations in the literature can be classified, along
similar lines to McCollum [24], as optimising:

• searching for the executed reaction;

• propensity recalculation; or

• propensity summation.

In addition, each of these optimisations may be implemented either statically or
dynamically.

7

2.2.1 Next Reaction Method

Gibson and Bruck’s Next Reaction Method (NRM) [7] is based on FRM and thus
avoids the propensity summation altogether. It attacks the searching problem dy-
namically by maintaining an indexed priority queue of reactions so that the reaction
with the smallest timestep is always first. NRM introduces limiting propensity recal-
culation to those reactions involving populations affected by the executed reaction
via a dependency graph.

2.2.2 Optimised Direct Method

Cao, Li and Petzold’s Optimised Direct Method (ODM) [2] borrows the dependency
graph to limit propensity recalculation from NRM, but, being based on DM, must
perform propensity summation, which it achieves by adjusting the propensity sum
with the few updated propensities rather than performing a full summation. The key
feature of ODM, however, is that it dispenses with the expensive dynamic indexed
priority queue in favour of statically ordering reactions, based on a profiling run, to
speed up linear searching on average.

ODM is particularly well suited to very stiff systems such as HSR (3.3), where the
most likely reactions occur first and the average search depth is low. For less stiff
systems, ODM offers less advantage over the direct method, and in the extreme
where the reaction propensities are equal, or nearly so, none at all.

2.2.3 Sorting Direct Method

The Sorting Direct Method (SDM) [24] of McCollum et al. adopts an approach
somewhere between NRM and ODM in that it maintains a linearly searched list,
like ODM, but sorts it dynamically, like NRM. It does this incrementally at low-cost
(as compared to NRM’s indexed priority queue) by simply exchanging each executed
reaction with that nearer the head of the list. Thus, the most commonly executed
reactions bubble toward the head of the list, reducing the average search depth, but
adapting to changes in reaction propensities.

Although there is some overhead associated with maintaining data structures in
NRM and SDM, in principle they should be faster than ODM, which uses static
ordering based on profiling, since profiling cannot capture large changes in reaction
propensities in periodic models, bistable models, or even models that get progres-
sively more or less stiff. However, in testing LDM (below) Li and Petzold found
little difference between ODM and SDM [18].

2.2.4 Logarithmic Direct Method

Li and Petzold’s Logarithmic Direct Method (LDM) [18], like all of the other methods
except NRM, is a propensity summing method. It attacks the searching problem by
maintaining an array of partial sums of propensities as the summation is performed,
and conducts a binary search on this array for reaction selection. Thus, the time to

8

find the next reaction is the O(lgM), and it is claimed to be insensitive to reaction
ordering, thus avoiding the pre-simulation of ODM. Li and Petzold find the method
to be significantly (≈20%) faster than ODM or SDM.

Note that, by the same rationale that motivates ODM, it should be advantageous
to statically organise the reactions so that the most likely reaction is in the middle
of the array and therefore most likely to be found first by binary search, although
the gain may be small.

9

10

3. Biochemical Model Systems

In order to develop and characterise CellMC, 4 popular and representative biochem-
ical models were used: two simple systems, one non-stiff (DD) and one slightly stiff
(ME), and two very stiff realistic systems, one exhibiting stochastic resonance (CR),
and the other commonly used as a benchmark in the literature (HSR).

In the context of SSA, stiff systems are characterised by extreme disparity in their
reaction propensities — in other words, some reactions being very much more likely
than others. The few very fast reactions require very small timesteps, not needed
to capture the dynamics of the slower reactions in the system. Figure 3.1 shows
the reactions of HSR in ODM order — Hellander shows an equivalent unordered
diagram [11, p.9] — the first six (≈10%) reactions account for ≈95% of all reactions
executed, while ≈75% of reactions are almost never executed (< 0.1% of the time).

0

5

10

15

20

25

0 10 20 30 40 50 60

F
re

qu
en

cy
 (

%
)

Reaction Number

Figure 3.1: Reaction Frequencies of HSR

The CellMC distribution contains all 4 models expressed as SBML Level 2, translated
from earlier SBML Level 1 versions mostly culled from the StochKit distribution [17].
The models are described in full in Appendix A, and only short descriptions are given
here after a brief introduction to the notation.

3.1 Decay Dimerisation Reaction

The decay dimerisation (DD) model is non-stiff, and the simplest model system used,
with 3 species and 4 reaction channels. The full details are given in Appendix A.2.

11

DD was included for comparison with StochKit [17], as it ships as an ODM example
for both the serial and MPI versions, has results in a recent summary [16], and is
used in Li & Petzold’s recent work on the GPU [19].

3.2 Metabolite-Enzyme Reaction

With a mean timestep of just 250ms, the metabolite-enzyme (ME) model is a sim-
ple, slightly stiff, generic model of 4 species — two metabolites, X and Y , whose
production is controlled by corresponding enzymes, EX and EY — with 9 reaction
channels. Full details are given in Appendix A.3.

Metabolite-enzyme is chosen because it is a small system, easy to work with in
development, but stiff enough that reaction ordering matters. It has also been solved
with high-resolution methods, so there are good comparisons in the literature[6].

3.3 E. Coli Heat-shock Reaction

The heat-shock reaction of E. coli (HSR) is a very stiff system of 28 species and 61
reaction channels which models the response of E. coli to heat stress. At elevated
temperatures, proteins begin to denature; the response is the activation of several
genes that produce chaperone enzymes, some of which help to refold denaturing
proteins, whilst others help to degrade denatured proteins [24, 2].

A generally stiff system, HSR gets progressively stiffer as the simulation progresses1

with large changes in the propensities of some reactions. Systems like this were one
of the principal motivations for the Sorting Direct Method (§ 2.2.3). The details are
given in Appendix A.4.

HSR is chosen principally because it is a real-world system whose characteristics have
made it popular as a benchmark, and its inclusion here facilitates ready comparisons
of execution times [24][2][11].

3.4 Circadian Rhythm

The circadian rhythm is a well-known cellular phenomenon, also known as the “bi-
ological clock”, and modeled by the Vilar oscillator [27][1]. The version of the Vilar
oscillator used here it is a system of 9 species and 16 reaction channels. The details
of the model are given in Appendix A.5.

It is chosen, not so much for its stiffness, which is on a par with HSR (below), but
because its stochastic resonance means that it is particularly ill-suited to determinis-
tic simulation, and particularly well-suited to SSA. Its oscillatory nature lends itself
to attractive animation.

1With the given initial conditions and sufficiently long simulation time

12

4. Platforms

An overview of the Cell/BE architecture is provided, followed by detailed descrip-
tions of all the hardware and software used for the development and profiling of
CellMC.

A total of 7 different Cell/BE and IA32 systems were used during development and
test. Tables 4.1 and 4.2 summarise these systems and their corresponding software
installations, respectively.

Name Processor Cores/SPUs GHz

esprit Intel Core
TM

2 2 1.86
scrat AMD Athlon

TM
64 1 2.00

arich AMD Opteron
TM

2216 2×2 2.40
grad Intel Xeon R© E5240 2×4 2.50
skara Sony/IBM/Toshiba Cell/BE 6 3.19
cell2 IBM PowerXCell

TM
8i 16 3.20

Cluster Sony/IBM/Toshiba Cell/BE 4×6 3.19

Table 4.1: Hardware Platforms

Name Distribution Ver. gcc libxml2 libxslt

esprit CentOS 5.3 4.1.2 2.6.26 1.1.17
scrat Ubuntu 8.04 4.2.4 2.6.31 1.1.22
arich Scientific Linux 4.7 3.4.6 2.6.26 1.1.17
grad Scientific Linux 5.3 4.1.2 2.6.26 1.1.17
skara Yellow Dog Linux 6.0 4.1.1 2.6.26 1.1.17
cell2 Fedora 9 4.1.1 2.7.2 1.1.24
Cluster Fedora 9 4.1.1 2.6.26 1.1.17

Table 4.2: Software Installations

4.1 The Cell Broadband Engine

The Cell Broadband Engine (Cell/BE) is a heterogeneous multicore microprocessor
developed by IBM , Toshiba, and Sony Computer Entertainment to power the Sony
Playstation 3 (PS3) games console [3].

In essence, a single Cell/BE processor consists of 9 processor cores and associated
hardware on a single die1: the PowerPC Processor Element (PPE), with a 64-bit,

1The architecture documentation is technically neutral on the number of cores, but the only
Cell/BE processors actually available have 1 PPE and 8 SPEs

13

dual-thread PowerPC core and conventional L1 and L2 cache; and 8 Synergistic Pro-
cessor Elements (SPE s), each consisting of a core, called the Synergistic Processing
Unit (SPU), 256KiB local store (LS), and memory flow controller (MFC). The 9
processing elements can communicate with each other via the high-speed Element
Interconnect Bus (EIB), or with off-chip memory and peripherals via memory and
I/O controllers connected to the EIB. Each SPU is a cut-down PowerPC processor
with 128 vector registers, each 128 bits, and VMX (better known as AltiVec) vector
instructions. [12, pp.27–31][13, pp.37–42,44][3]

Figure 4.1: Cell/BE architecture showing 8 SPEs, the PPE, I/O controller, and
main memory interface controller connected to the element interconnect bus.

4.1.1 Sony PlayStation R©3

The Sony PlayStation R©3 games console (PS3) contains a single first-generation
Cell/BE processor at 3.192GHz, 512MiB of RAM, 1 Gbps ethernet, and a customised
Nvidia GPU — the so-called “Reality Synthesizer” (RSX).

Only 6 SPUs are available to Linux R© applications, since, to increase wafer yields,
one SPU is disabled on all PS3s, and the Sony Game OS (hypervisor) locks a further
SPU.

The hypervisor also mediates all communication to the graphics and network subsys-
tems, disabling access to accelerated graphics entirely, and adding significant latency
to network communications.

The first-generation Cell/BE processor has undergone two die-shrinks, from 90nm
to 65nm to 45nm. Accordingly, when a PS3 is purchased determines its power
consumption to some degree, with the peak power consumption of the 90nm and
65nm versions being ≈200W and ≈135W respectively. It is likely that all the PS3s
used have 65nm Cell/BE processors.

14

4.1.2 Sony PlayStation 3 Cluster

The UPPMAX PS3 cluster consists of 8 Sony PlayStation 3 games consoles, of which
4 were commissioned and available.

User-local installations of libxml2 and libxslt were used in order to overcome biarch
difficulties (only the 64-bit versions of the packages were installed and without the
corresponding development packages). A user-level installation of OpenMPI 1.3.1 was
used after some difficulty was encountered with the installed MPI version.

4.1.3 IBM QS22

An IBM blade with two 3.2GHz IBM PowerXCell
TM

8i processors (second-generation
Cell/BE processors), with all 8 SPUs available on both processors, for a total of 16
SPUs.

No explicit programmatic communication between the two Cell/BE processors is
necessary, and all 16 SPUs can be used transparently.

4.2 x86 Platform

4.2.1 Modest PC Workstation

Esprit is a generic PC with an 1.86GHz Intel Core
TM

2 CPU with 2MiB of L2 cache
(family 6, model 15, stepping 2) and 2GiB of RAM, running CentOS release 5.3
(Final).

In addition to the libraries required by CellMC, mpich2 1.0.8p1, needed by StochKit,
in addition to its corresponding development packages, was installed from the ordi-
nary CentOS distribution and updated as of April 2009.

4.2.2 AMD Opteron
TM

Multiprocessor

A dual dual-core (4 cores in total) 2.4GHz AMD Opteron
TM

2216 (family 15, model
65, stepping 2) machine with 1MiB of L2 cache per core (4MiB total), running
Scientific Linux release 4.7 (Beryllium).

4.2.3 Intel Xeon R© Multiprocessor

A dual quad-core (8 cores in total) 2.5GHz Intel Xeon R© E5420 (family 6, model 23,
stepping 6) machine with 3MiB of L2 cache per core (6MiB shared on every 2-core
die for 12MiB per dual-die processor package) for a machine total of 24MiB, with
16GiB of RAM, running Scientific Linux release 5.3 (Boron).

15

16

5. CellMC Compiler

5.1 Basic Operation

A homogeneous chemical system is expressed as an SBML model (the SBML models
of § 3 are included in the distribution).

CellMC is invoked in two passes, with an intervening use of an XSL-T processor to
re-order unoptimised models. If the document order of the reactions in an SBML
model already coincide with ODM order, only the normal 2nd pass is required.

5.1.1 Pass 1

1. CellMC is invoked with the -p (profiling) flag to generate C code from the
SBML file via XSL-T.

2. CellMC compiles the C code and supporting libraries and produces a native
executable.

5.1.2 SBML Model Transformation

1. The executable is run from the command-line for a representative final simu-
lation time.

2. The executable emits an XSL-T transformation which, when applied to the
original model, re-orders the reactions in descending order by total number of
occurrences over the simulation time (ODM order).

3. The transformation is applied to the original SBML model, using any XSL-T
processor1, producing a new reordered SBML model,

5.1.3 Pass 2

• The new model is transformed via XSL-T into C code, compiled, and linked,
as in Pass 1, producing the optimised executable.

A brief user guide for CellMC is included in Appendix B, with an example of oper-
ation in § B.4.

1The GNU XSL-T processing library, libxslt, is required by CellMC, and xsltproc , an easy-to-
use command-line XSL-T processor, is installed with it by default.

17

5.2 Output

The first-pass (profiling) output is a XSL transformation which, when applied to the
original SBML file, re-orders the reactions into ODM order.

The usual (second pass) output is the final population vector preceded by a header
containing extensive metadata about the model, compilation, and invocation, in-
cluding run timing data; see Appendix B.3 for details.

5.3 Implementation

On all supported platforms, CellMC uses XSL-T to transform source SBML into C
code and compiles it with the local gcc. The XSL-T transformation is done using
GNU libxslt, since this is installed by default by all common Linux distributions. On
Cell/BE, the IBM Cell SDK 3.0 is required.

CellMC requires gcc and will not work with the IBM xlc or Intel icc compilers.

Although some code is shared, it is important to differentiate clearly between the
source-code that is compiled to produce CellMC and the source-code that CellMC
uses to compile executables realising SSA from an SBML file.

Cross-platform libraries were written for common CellMC functionality, such as
command-line argument processing, performing XML validation and pre-conditioning,
and XSL-T transformation.

The support code, needed by CellMC at runtime, also has substantial shared code
for command-line argument processing, writing final populations to disk, generating
the metadata header for the output file, and SIMD vector representation.

The similarity ends, however, when it comes to the code that actually implements
SSA. For each architecture, there are a few distinct XSL-T files although, again,
platform-neutral transformations are shared. CellMC passes a number of parame-
ters into the XSL-T transformations, and passes the same parameters via the gcc
“command-line” as preprocessor constants. In the C support files, only preprocessor
directives are available to tailor functionality to the platform and CellMC options.
In the XSL-T files, however, both XSL-T parameters and preprocessor directives are
available and are mixed freely and rather arbitrarily.

5.3.1 Parallel Pseudo-Random Number Generation

SSA requires a vast number of uniformly distributed pseudo-random numbers, per-
haps 1011 for a typical simulation. CellMC uses a fast Mersenne Twister (19937)
on both IA32 (see § 5.5.1) and PS3 (IBM’s mc rand library). For the multi-
(core/processor) case, the PRNGs are boot-strapped with different seeds at startup
from the Posix R© rand48 family LFSR PRNG, itself seeded with a master seed (set-
table on the command-line with a hard-coded default). In principle, there is a very
small risk of correlation with this scheme. A better solution is to use a distributed

18

PRNG, but this would have added a significant extra burden to the software devel-
opment effort for no apparent gain — it appears to make no difference in practice
— and the current scheme is easily replaceable with a “proper” distributed PRNG
should one become available.

5.3.2 Floating-Point Precision

Single-precision (32-bit) floating-point representation of reaction constants and propen-
sities has not been found to be problematic in GPU or FPGA implementations, nor
was it found to be in CellMC testing. However, it was found that single-precision
representation of time was highly problematic. In early tests on Cell/BE, it was
found for 500s HSR (§ 3.3) that when time was reckoned starting at zero and adding
on timesteps up to the final time, the average number of timesteps was over 108,
whilst when time was reckoned starting at the final time and subtracting timesteps
down to zero, the average number of timesteps was ≈ 4.8× 107. Representing time
in double precision, we found the number to be ≈ 6.2×107 with excellent agreement
between different implementations.

This can be explained by the extreme stiffness of HSR often leading to small timesteps
of the order of 10−7s, which differ from the final time by as much as 228 leading to
the problematic loss of significant digits due to additive roundoff, or entire timesteps,
in single precision, where the significand is just 23 bits, and necessitating the use
of (Kahan) compensated summation [14] for time. This alleviates the problem, and
the number of timesteps for single-precision time with compensated summation are
found to agree with double-precision results.

5.4 Cell/BE Platform Specifics

On the Cell/BE platform, the build process is somewhat involved. CellMC follows
the pattern reverse-engineered from Makefiles supplied with the IBM Cell SDK 3.0.

1. Compile the SPU code with spu-gcc to object code

2. Transform SPU object code to a PPU-embeddable module with ppu-embedspu

3. Transform the embeddable module to an archive with ppu-ar

4. Compile PPU code with ppu-gcc

5. Link PPU code with embeddable archive with ppu-gcc

Peculiarities of the SPUs on Cell/BE mean that certain intuitions about computa-
tional cost do not apply. For example, just doing arithmetic is often cheaper than
deciding whether to do it or not, because branches are expensive on the SPU. Sim-
ilarly, the relative expense of indirection on the SPU and the huge file of 128 vector
registers means that the working dataset of many models, up to about the size of
HSR, can be kept entirely in registers.

19

After climbing the Cell/BE learning curve, and considerable experimentation, it
was clear that ODM was likely to give the best results — it is quicker to do a linear
search of 10 registers than to so much as fetch a value from the local store.

5.4.1 Intrinsics

The IBM Cell SDK 3.0 provides SPU intrinsics, C-language functions that, to a
large degree, map directly to SPU assembly language statements. These are used
extensively in the SPU code, which is the part that actually realises SSA.

5.5 IA32 Platform Specifics

When it was decided that a fast IA32 version was required, a great deal of time
had been spent optimising the Cell/BE code. The following were identified as likely
bottlenecks on IA32:

• Random number generation — two needed per reaction

• The log() function

5.5.1 A Re-entrant SIMD-oriented Fast Mersenne Twister

When development on IA32 commenced, Saito and Matsumoto’s SIMD-oriented
Fast Mersenne Twister (SFMT) [25] was the fastest available high-quality PRNG
for IA32. Unfortunately, its extensive use of global variables made it unsuitable
for multithreaded operation, so it was modified for re-entrancy. It was also profiled
and found to have an extraordinarily sharp profile, with execution time strongly
dominated by a single function: mm recursion(). Disassembly revealed considerable
register spill, which could not be entirely ameliorated using the register storage-class
modifier, so sequence of 9 intrinsics was re-coded as inline assembly language, and
the overall speed of SFMT was doubled. This heavily modified version of SFMT-
1.3.3 was dubbed RSMT for Re-entrant SIMD-oriented Mersenne Twister.

CellMC’s -n option allows the Posix R© rand48 family of PRNGs to be used instead
of RSMT, but its use is unnecessary and discouraged.

5.5.2 SIMD log()

On Cell/BE, the IBM Cell SDK 3.0 provides an inline SIMD log function, logf4(),
which computes the natural logarithm of a SIMD vector of four floats simultaneously
using an eighth-order polynomial approximation2 algorithm. This was ported to
SSE2 assembly language to avoid the slower option of calling the library logf()
function 4 times.

2Attributed to “C. Hastings Jr, 1955”, in the IBM source-code file

20

CellMC’s -l option allows the Posix R© logf() function or the FPU to be used
directly on IA32 in place of the SSE2 assembly language version, but its use is
unnecessary and discouraged.

5.6 Code and Build Management

The code is maintained in a Subversion repository and uses the GNU Autotools
build chain [22, 23, 4].

Accordingly, building from source is extremely simple and follows a familiar and
well-established procedure, for example:

$ tar xzf cellmc-0.2.16.tar.gz
$ cd cellmc-0.2.16
$./configure
$ make

21

22

6. Results

6.1 Correctness of Results

We demonstrate that programs generated by CellMC produce results consistent with
expectations. We do this by running simulations with parameters from the literature
and showing that the results are comparable.

6.1.1 Decay Dimerisation

Figure 6.1 shows the means of the final populations for 1000 trajectories of the
decay dimerisation model versus simulated time. The initial conditions X1 = 105,
X2 = X3 = 0 are taken directly from Gillespie’s tau-leap paper, and the curves of
Figure 6.1 are directly comparable with Figure 4(b) found there [10, p.1724].

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30

X(1)
X(2)
X(3)

Figure 6.1: Population means vs. time for decay dimerisation

6.1.2 Metabolite Enzyme

Figure 6.2 shows isolines of selected 2D marginal PDFs for 106 trajectories at a final
time of 1500s. The plots are labeled a vs. b according to the species on the vertical
and horizontal axes respectively.

The final time and plots were chosen for direct comparison with Engblom [6, p.887].

23

0

2

4

6

8

10

0 2 4 6 8 10

(a) ey vs. ex

0

2

4

6

8

10

0 20 40 60 80 100

(b) ex vs. x

0

20

40

60

80

100

0 20 40 60 80 100

(c) y vs. x

0

2

4

6

8

10

0 20 40 60 80 100

(d) ey vs. x

Figure 6.2: Isolines of selected 2D marginal PDFs for 106 metabolite-enzyme tra-
jectories of 1500s

6.1.3 E. Coli Heat-shock Reaction

Figure 6.3 shows a marginal PDF for the σ32 factor at 50s for different numbers of
trajectories. The curve for 103 trajectories is comparable with Hellander[11, p.7].

6.1.4 Circadian Rhythm

Figure 6.4 shows the cyclic oscillation of the two most populous species in the Vilar
oscillator model by plotting their means against each other with time. Although
the oscillation is clear, it appears here that the oscillation is damped. In reality, the
variance of the populations is merely increasing along the path of the limit cycle,
which makes the mean appear to converge toward the centre. The stability of the
oscillation is clearer in animation1.

1See http://cellmc.org/examples/vo/

24

http://cellmc.org/examples/vo/

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60

103

104

105

Figure 6.3: 1D marginal PDF of σ32 factor for 103 and 104 HSR trajectories at 50s

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

R
ep

re
ss

or
 R

Gene A with bound activator

0
500

1000
1500

2000
2500

Gene A with bound activator

0

500

1000

1500

2000

Repressor R

0

20

40

60

80

100

Time (hrs)

Figure 6.4: Means of D′a vs. R in the Vilar oscillator for 100hrs

6.2 Performance

All timings are “wall-clock” times recorded by CellMC (or, rather, by the programs
produced by CellMC). As this information is written into a header in the output
file (B.3), it does not include the time taken to write the final populations to disk.
The time recorded is, therefore, the total time taken by the setup, computation, and
communications. In practice, the additional time taken to save the final populations
is seldom significant, a few tenths of a second, but for extremely large numbers of
trajectories, the difference is considerable. For example, 3 × 106 trajectories of the
metabolite enzyme problem (§ 3.2) was observed to take approximately 10s to write

25

to disk on the PS3 cluster (§ 4.1.2).

In addition, on the PS3 cluster, mpirun uses ssh to connect to the other nodes on
the cluster and launch a daemon on each one, which adds another second or two of
unrecorded latency.

In most cases, timings are averages of 5–10 identical runs conducted when the ma-
chines were otherwise quiet. The consistency of timing between runs under these
circumstances is quite remarkable, in many cases, timings for all 10 runs were iden-
tical to the millisecond.

6.3 Comparison of Results

6.3.1 Comparison on PC Platform

PC Versions in the Literature

Table 6.1 shows the average time to compute one 500s HSR (§ 3.3) trajectory2 and
“speed” in millions of reactions per second (Mrps), where available, from ODM
results in the literature; also shown are analogous results from CellMC on three
similar IA32 machines.

Although the hardware is not identical, so a direct comparison cannot be drawn
because of differences in clock-speed and instruction latency, it is nevertheless clear
that CellMC is considerably faster than published results3.

Description Processor GHz Time (s) Mrps

Cao et al. [2] Intel Pentium
TM

4 1.4 76.5 −
McCollum et al. [24] Intel Pentium

TM
4 2.0 52.56 0.88

Yoshimi et al. [29] Intel R© Core
TM

2 Quad 2.4 − 1.61

CellMC AMD Athlon
TM

64 2.0 7.63 8.09
CellMC Intel Core

TM
2 1.86 6.11 10.38

CellMC Intel R© Core
TM

2 Quad 2.5 4.22 14.74

Table 6.1: Single Core x86 Performance Comparison for 500s HSR

Comparison with StochKit

StochKit is a capable and popular toolkit for SSA with an active user community of
over 100 users. In addition to the exact SSA methods described here, it implements
approximate methods such as tau-leaping and slow-scale SSA. Importantly, it is
occasionally used as a benchmark for other implementations [29].

2Note that in most tables, the “Time” column is the total runtime.
3The results listed are from papers comparing algorithms, rather than attempting to achieve the

fastest implementation.

26

Table 6.2 shows a direct comparison between StochKit and CellMC, “out of the box”
on the same modest workstation (§ 4.2.1), with respect to the decay dimerisation
model (§ 3.1). This model is chosen because StochKit ships with an ODM example
for both the serial and MPI versions. Although StochKit also ships with a HSR
example, it uses the slower direct method (§ 2.1), which would not make for fair
comparison. The parameters (10,000 10-second trajectories) are those used in the
StochKit examples.

Software Cores Runtime (s) Speedup

StochKit 1 144.3 1
CellMC 1 14.7 9.8

StochKit (MPI) 2 90.7 1
CellMC (pthreads) 2 7.4 12.3

Table 6.2: Software comparison for 10,000 10s DD Simulations

6.3.2 Comparison with GPU & FPGA

The sole reported implementation of SSA on the GPU is by Li and Petzold [19].
Unfortunately, there is insufficient detail to compare their implementation. They
do assert that their GPU implementation is about 200 times faster than a baseline
running on the host PC, but since we don’t know how fast it is either, we can draw
no conclusions.

On the FPGA, again, “speedup” claims over a particular PC are made without
giving enough detail of the chemical model to allow it to be reconstructed, without
any details whatever of the PC software, or comparing with arcane PC hardware. As
is clear from Table 6.2, implementation can make an order-of-magnitude difference
on the same machine, which means that most speedup claims in the literature, to
be charitable, do not form a valid basis for comparison [31, 30, 28].

One very recent FPGA result that may be used as a basis for direct comparison
achieves 8.98 millions of reactions per second (Mrps) when running 500s HSR (3.3)
trajectories, which they also report as 5.5 times faster that StochKit on an Intel R©

Core
TM

2 Quad [29]. Table 6.3 shows results for CellMC for the same simulation; a
single PlayStation R©3 , for example, is 7 times faster with CellMC.

27

Machine Type Time (m:s) Mrps

esprit PC (dual) 49:49 20.77
arich PC (quad) 28:32 36.50
skara PS3 15:46 66.01
grad PC (octo) 9:13 112.27
cell2 QS22 6:03 174.43
Cluster 4×PS3 4:10 261.14

Table 6.3: Platform Comparison for 103 500s HSR (§ 3.3)

6.4 Scalability

6.4.1 Cell/BE

Table 6.4 shows the runtimes and speedup against number of SPUs for a CellMC-
produced program realising the decay dimerisation model4. Speedup is linear with
no sign of saturation: at worst, it is better than 99% of perfectly linear speedup.

SPUs Runtime (s) Speedup

PS3 QS22 PS3 QS22

1 41.80 40.12 1.00 1
2 20.90 20.06 2.00 2.00
3 13.94 13.38 3.00 3.00
4 10.45 10.03 4.00 4.00
5 8.36 8.03 5.00 5.00
6 6.97 6.69 6.00 6.00
7 5.74 6.99
8 5.03 7.98
9 4.47 8.97
10 4.02 9.97
11 3.66 10.96
12 3.36 11.95
13 3.10 12.94
14 2.88 13.92
15 2.69 14.91
16 2.53 15.89

Table 6.4: Speedup for 30,000 10s DD Simulations on Cell/BE

Figure 6.5 depicts the data of Table 6.4 graphically. Since the speedup is identical
for PS3 and QS22 up to 6 SPUs, only the data for the QS22 is plotted in the speedup

4CellMC-produced programs accept a -cn argument to change the number of cores used.

28

graph.

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16

R
un

tim
e

(s
)

#SPUs

QS22
PS3

(a) Runtime

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
pe

ed
up

SPUs

(b) Speedup

Figure 6.5: Runtime and Speedup vs. Number of SPUs on Cell/BE

PlayStation R©3 Cluster

Table 6.5 shows the runtimes and speedup against number of nodes for a CellMC-
produced program realising the metabolite-enzyme model5, running on a cluster of
4 Sony PlayStation R©3 s. Each node uses all 6 available SPUs. Speedup is linear
with no sign of saturation.

Nodes Runtime (s) Speedup

1 93.09 1
2 46.42 2.01
3 31.05 3.00
4 23.34 3.99

Table 6.5: Speedup for 1.5× 106 1,500s ME Simulations on PS3 Cluster

Figure 6.6 plots the data in Table 6.5.

5CellMC has a -M option to produce MPI code

29

0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
un

tim
e

(s
)

Nodes

(a) Runtime

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

S
pe

ed
up

Nodes

(b) Speedup

Figure 6.6: Runtime and Speedup vs. Number of Nodes on PS3 Cluster

6.4.2 x86

It is clear from Table 6.2 that CellMC-produced programs take full advantage of
the 2nd core on a dual-core IA32 processor. Table 6.6 shows the running time and
speedup vs. number of cores6 for a CellMC-produced program realising HSR (§ 3.3)
running on a quad-core AMD Opteron

TM
and a dual Intel R© Core

TM
2 Quad (8 cores).

Speedup is almost perfectly linear, but to maintain linear speedup on the final
processor, it is necessary to use Linux R©-specific thread-CPU affinity system calls
to “attach” each thread of simulation to a specific CPU. In the absence of this,
performance degrades, rather than improves, when the fourth core of four is put to
use. This is a known problem with the default kernel scheduler of some Linux R©

kernels. The “starred” entry of Table 6.6 shows what happens with the default
scheduling affinity.

CPUs Runtime (s) Speedup

arich grad arich grad

1 22:14 13:52 1 1
2 11:31 7:04 1.93 1.97
3 7:51 4:44 2.83 2.95
4 ∗8:16 3:35 ∗2.69 3.91
5 2:50 4.91
6 2:23 5.86
7 2:04 6.78
8 1:52 7.52

Table 6.6: Speedup for 2,500 50s HSR Simulations on IA32

Figure 6.7 plots the data in Table 6.6 using the 4-processor value for the (bad) case
6Again using the -cn option to the CellMC-produced program

30

with default thread/CPU affinity.

Speedup is, to some degree, dependent on the number of trajectories chosen, since
the number of trajectories actually computed is the smallest integer larger than the
requested number that is a multiple of the number of SIMD slots (4) and the number
of CPUs. The data of Table 6.6 and Figure 6.7 is not corrected for this. For large
numbers of trajectories, apparent speedup is generally better even than the 94% of
perfect speedup shown here.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

R
un

tim
e

(s
)

Number of Cores

grad
arich

(a) Runtime

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

grad
arich

(b) Speedup

Figure 6.7: Runtime and speedup vs. number of CPUs on IA32 showing (solved)
scheduling issue

6.5 Platform Comparison

Tables of timings are presented below for a representative selection of different prob-
lems over timescales from seconds to many tens of minutes to give a picture of the
comparative performance of CellMC on different platforms. One set of results is
included for each of the 4 models.

Timings for grad marked with an asterisk are estimated from shorter simulations
because they would exceed a 30-minute CPU time limit.

Machine Type Time (s) Mrps

esprit PC (dual) 22.03 35.89
grad PC (octo) 3.65 218.23
skara PS3 6.97 113.24
cell2 QS22 2.53 312.83
Cluster 4×PS3 1.80 439.60

Table 6.7: Platform Comparison for 3× 104 10s DD (§ 3.1)

31

Machine Type Time (s) Mrps

esprit PC (dual) 303.68 13.03
grad PC (octo) 28.03 141.12
skara PS3 44.03 89.82
cell2 QS22 16.50 239.78
Cluster 4×PS3 11.24 352.00

Table 6.8: Platform Comparison for 106 1000s ME (§ 3.2)

Machine Type Time (m:s) Mrps

esprit PC (dual) 39:05 20.68
grad PC (octo) ∗7:25 112.30
skara PS3 12:59 62.40
cell2 QS22 4:53 166.52
Cluster 4×PS3 3:18 247.02

Table 6.9: Platform Comparison for 104 50s HSR (§ 3.3)

Machine Type Time (m:s) Mrps

esprit PC 17:34 30.87
grad PC (octo) 3.03 178.47
skara PS3 5:39 96.08
cell2 QS22 2:07 256.74
Cluster 4×PS3 1:25 383.79

Table 6.10: Platform Comparison for 105 25hr CR (§ 3.4)

32

7. Conclusions & Future Work

7.1 General Conclusions

Programs produced by CellMC yield simulation results comparable with the litera-
ture. Initial fears about single-precision arithmetic being insufficient were unfounded
for the model systems tested (§ 6.1) [19], but precision-compensated (Kahan) sum-
mation is necessary in single-precision (§ 5.3.2), particularly for long simulations of
stiff systems.

On PC, CellMC programs perform extremely well when compared to extant PC
implementations, being almost 10 times faster on a single core than StochKit and
reported speeds in the literature on comparable single core CPUs (§ 6.3.1). On up
to 8 core systems, CellMC programs scale better than 94% perfectly (§ 6.4.2) and
further outperform both StochKit and implementations in the literature.

The Cell/BE programs produced by CellMC are, roughly speaking, the same speed
per core as those on a typical PC. Accordingly, a single Sony PlayStation R©3 , with
6 available SPUs, is over 3 times faster than the “typical desktop” dual-core IA32
programs (§ 6.5), and performance scales linearly both with number of SPUs (§ 6.4.1)
and on a cluster (§ 6.4.1).

Given that a PlayStation R©3 costs somewhat less than a typical PC workstation and
has approximately the same power consumption (≈200W), the PlayStation R©3 offers
at least 3 times the performance per watt, and at least 5 times the performance per
unit hardware cost when compared to contemporary PC hardware.

CellMC programs, particularly on the PlayStation R©3 , appear to outperform the
most recent work on FPGAs by a considerable multiple (§ 6.3.2).

The ODM version of SSA is “embarrassingly parallel” and well-suited to Cell/BE
and other multicore processors, although it is not trivially SIMDisable due to the
branching necessary at each step.

7.2 Future Work

CellMC’s principal weakness is that the programs it produces are unable to store
whole trajectories or save populations at intervals, rather than just final populations.
This should be remedied.

CellMC should have the ability to compute marginal PDFs of selected species, rather
than having to rely on external software.

CellMC should compile models to shared objects with a consistent interface, rather
than compiling a monolithic application, so that compiled models could be linked
at runtime with a generic application stub that computes and displays marginal
PDFs. This is, however, difficult to do in a portable way without compromising
performance.

33

A complete redesign could see CellMC just-in-time compiling SBML models into
dynamically loadable shared objects, and loading these into a generic feature-rich
front-end.

CellMC could easily be extended to do MCMC simulations other than SSA.

While there are good reasons to prefer ODM over SDM or LDM on Cell/BE, CellMC
should implement LDM on IA32.

34

Bibliography

[1] Naama Barkai and Stanislas Leibler. Circadian clocks limited by noise. Nature,
403(6767):267–268, January 2000. Available from http://www.nature.com/
nature/journal/v403/n6767/pdf/403267b0.pdf.

[2] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of the stochas-
tic simulation algorithm for chemically reacting systems. Journal of Chemical
Physics, 121(9), September 2004. Available from http://link.aip.org/link/
?JCPSA6/121/4059/1.

[3] T. Chen, R. Raghavan, J.N. Dale, and E. Iwata. Cell Broadband Engine Ar-
chitecture and its first implementation — a performance view. IBM J. Res. &
Dev., 51(5), September 2007.

[4] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. O’Reilly Media, Inc., Sebastopol, California, June
2004. ISBN: 0-596-00448-6, available from http://svnbook.org/.

[5] Stefan Engblom. Numerical Methods for the Chemical Master Equation, Li-
centiate thesis 2006-07. PhD thesis, Uppsala University, Division of Scientific
Computing, Department of Information Technlogy, Uppsala University, Box
337, SE-751 05 Uppsala, Sweden, August 2006.

[6] Stefan Engblom. Galerkin spectral method applied to the chemical master
equation. Communications in Computational Physics, 5(5):871–896, May 2009.
Also Paper III in Numerical Solution Methods in Stochastic Chemical Kinetics,
Acta Universitatis Upsaliensis, ISBN 978-91-554-7322-8.

[7] MA Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels. Journal of Chemical Physics,
104(9):1876–1889, March 2000. http://dx.doi.org/10.1021/jp993732q,
http://tinyurl.com/6lwatr.

[8] Daniel T. Gillespie. A General Method for Numerically Simulating the Stochas-
tic Time Evolution of Coupled Chemical Reactions. Journal of Computa-
tional Physics, 22(4):403–434, December 1976. http://dx.doi.org/10.1016/
0021-9991(76)90041-3, http://tinyurl.com/5bmodz.

[9] Daniel T. Gillespie. A rigorous derivation of the chemical master equation.
Physica A: Statistical Mechanics and its Applications, 188(1-3):402–425, 1992.
Available from http://dx.doi.org/10.1016/0378-4371(92)90283-V.

[10] Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemi-
cally reacting systems. Journal of Chemical Physics, 115(4), July 2001. Avail-
able from http://www.soe.ucsc.edu/~msmangel/Gillespie01.pdf.

35

http://www.nature.com/nature/journal/v403/n6767/pdf/403267b0.pdf
http://www.nature.com/nature/journal/v403/n6767/pdf/403267b0.pdf
http://link.aip.org/link/?JCPSA6/121/4059/1
http://link.aip.org/link/?JCPSA6/121/4059/1
http://svnbook.org/
http://dx.doi.org/10.1021/jp993732q
http://tinyurl.com/6lwatr
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://tinyurl.com/5bmodz
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://www.soe.ucsc.edu/~msmangel/Gillespie01.pdf

[11] Andreas Hellander. Numerical simulation of well stirred biochemical reactions
governed by the master equation. Licentiate thesis 2000-003, Uppsala Univer-
sity, Division of Scientific Computing, Department of Information Technlogy,
Uppsala University, Box 337, SE-751 05 Uppsala, Sweden, 2008.

[12] IBM Corporation, Toshiba Corporation, and Sony Computer Entertainment
Inc. Cell Broadband Engine Architecture. IBM Systems and Technology Group,
October 2007. Version 1.02.

[13] IBM Corporation, Toshiba Corporation, and Sony Computer Entertainment
Inc. Cell Broadband Engine Programming Handbook. IBM Systems and Tech-
nology Group, April 2007. Version 1.1.

[14] W. Kahan. Further remarks on reducing truncation errors. CACM, 8(1):40,
January 1965.

[15] Thomas R. Kiehl, Robert M. Mattheyses, and Melvin K. Simmons. Hybrid
simulation of cellular behaviour. Bioinformatics, 20(3):316–222, 2004. Avail-
able from http://bioinformatics.oxfordjournals.org/cgi/reprint/20/
3/316.pdf.

[16] Hong Li, Yang Cao, Linda R. Petzold, and Daniel T. Gillespie. Algorithms and
Software for Stochastic Simulation of Biochemical Reacting Systems. Biotech-
nology Progress, 24(1):56–61, January 2008. Available from http://people.
cs.vt.edu/~ycao/publication/Biotechnology_Progress07.pdf.

[17] Hong Li, Yang Cao, Kevin Sanft, Min K Roh, Marc B. Griesemer, and Fenglin
Liao. StochKit: A Stochastic Simulation Toolkit, 2005. Available from http:
//www.engineering.ucsb.edu/~cse/StochKit/.

[18] Hong Li and Linda Petzold. Logarithmic Direct Method for Discrete Stochastic
Simulation of Chemically Reacting Systems. Technical report, Department
of Computer Science, UCSB, Department of Computer Science, University of
California at Santa Barbara, Santa Barbara, CA, 93106, July 2006. Available
from http://www.cs.ucsb.edu/~cse/Files/ldm0513.pdf.

[19] Hong Li and Linda Petzold. Efficient Parallelization of Stochastic Simulation
Algorithm for Chemically Reacting Systems on the Graphics Processing Unit.
International Journal of High Performance Computing Applications, 2009. Sub-
mitted. Preprint at http://www.cs.ucsb.edu/~cse/Files/GPUSSA.pdf.

[20] Larry Lok. The need for speed in stochastic simulation. Nature Biotechnology,
22(8):964–965, August 2004. Article in “News and Views” section.

[21] Per Lötstedt and Lars Ferm. Dimensional reduction of the Fokker-Planck equa-
tion for stochastic simulation of chemical reactions. Multiscale Model. Simul.,
5(2):593–614, 2006.

[22] David MacKenzie, Ben Elliston, and Akim Demaille. Autoconf: Creating Auto-
matic Configuration Scripts. The Free Software Foundation, 51 Franklin Street,

36

http://bioinformatics.oxfordjournals.org/cgi/reprint/20/3/316.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/20/3/316.pdf
http://people.cs.vt.edu/~ycao/publication/Biotechnology_Progress07.pdf
http://people.cs.vt.edu/~ycao/publication/Biotechnology_Progress07.pdf
http://www.engineering.ucsb.edu/~cse/StochKit/
http://www.engineering.ucsb.edu/~cse/StochKit/
http://www.cs.ucsb.edu/~cse/Files/ldm0513.pdf
http://www.cs.ucsb.edu/~cse/Files/GPUSSA.pdf

Boston, MA 02111, November 2006. Confirmed to be at http://www.gnu.org/
software/autoconf/manual/autoconf.pdf for version 2.61 on 2007-05-24.

[23] David MacKenzie, Tom Tromey, and Alexandre Duret-Lutz. GNU Automake.
The Free Software Foundation, 51 Franklin Street, Boston, MA 02111, October
2006. Confirmed to be at http://sources.redhat.com/automake/automake.
pdf for version 1.10 on 2007-05-24.

[24] James M. McCollum, Gregory D. Peterson, Chris D. Cox, Michael L. Simpson,
and Nagiza F. Samatova. The sorting direct method for stochastic simulation of
biochemical systems with varying reaction execution behaviour. Computational
Biology and Chemistry, 30(1):39–49, February 2006. http://dx.doi.org/10.
1016/j.compbiolchem.2005.10.007, http://tinyurl.com/6pm9eh.

[25] Mutsuo Saito and Makoto Matsumoto. SIMD-oriented Fast Mersenne Twister:
a 128-bit Pseudorandom Number Generator. In Alexander Keller, Stefan Hein-
rich, and Harald Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2006, pages 607–622. Springer-Verlag, Berlin Heidelberg, December
2007. Proceedings of the Seventh International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing. Available from http:
//www.springerlink.com/content/j741302101h6615k/fulltext.pdf.

[26] Lukasz Salwinski and David Eisenberg. In silico simulation of biological network
dynamics. Nature Biotechnology, 22(8):1017–1019, August 2004.

[27] José M. G. Vilar, Hao Yuan Kueh, Naama Barkai, and Stanislas Leibler.
Mechanisms of noise-resistance in genetic oscillators. Proc. Nat. Acad. Sci.
USA, 99(9):5988–5992, April 2002. Available from http://www.pnas.org/cgi/
reprint/99/9/5988.

[28] M. Yoshimi, Y. Osana, T. Fukushima, and H. Amano. Stochastic Simulation
for Biochemical Reactions on FPGA, pages 105–114. Springer-Verlag, 2004.

[29] Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, and Akira Funahashi.
Practical Implementation of a Network-based Stochastic Biochemical Sim-
ulation System on an FPGA. In FPL 2008: International Conference
on Field Programmable Logic and Applications. IEEE, September 2008.
Available from http://ieeexplore.ieee.org/search/srchabstract.jsp?
arnumber=4630034.

[30] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Akira Funahashi, Noriko Hiroi,
Yuichiro Shibata, Naoki Iwanaga, Hiroaki Kitano, and Hideharu Amano. An
FPGA Implementation of High Throughput Stochastic Simulator For Large-
Scale Biochemical Systems. In FPL’06: International Conference on Field
Programmable Logic and Applications. IEEE, August 2006. Available from
http://ieeexplore.ieee.org/iel5/4095018/4100939/04100980.pdf.

[31] Masato Yoshimi, Yasunori Osana, Yow Iwaoka, Akira Funahashi, Noriko Hiroi,
Yuichiro Shibata, Naoki Iwanagaand, Hiroaki Kitano, and Hideharu Amano.

37

http://www.gnu.org/software/autoconf/manual/autoconf.pdf
http://www.gnu.org/software/autoconf/manual/autoconf.pdf
http://sources.redhat.com/automake/automake.pdf
http://sources.redhat.com/automake/automake.pdf
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://tinyurl.com/6pm9eh
http://www.springerlink.com/content/j741302101h6615k/fulltext.pdf
http://www.springerlink.com/content/j741302101h6615k/fulltext.pdf
http://www.pnas.org/cgi/reprint/99/9/5988
http://www.pnas.org/cgi/reprint/99/9/5988
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4630034
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4630034
http://ieeexplore.ieee.org/iel5/4095018/4100939/04100980.pdf

The Design of Scalable Stochastic Biochemical Simulator on FPGA. In Interna-
tional Conference on Field-Programmable Techhnology. IEEE, 2005. Available
from http://ieeexplore.ieee.org/iel5/10488/33244/01568590.pdf.

38

http://ieeexplore.ieee.org/iel5/10488/33244/01568590.pdf

A. Model Details

A.1 Notation

A system of reactions is denoted by a sequence of arrows with reactants shown at
the head, products at the nock1, and reaction constants over, or under, the shaft.
The null or empty-set symbol, ∅, is used to denote the disappearance or appearance
of a reactant or product, respectively, from the purview of the model; in cellular
biochemistry, for example, this could mean that a molecule decays or appears from
the cytoplasm, but that the precise details of how it arises or vanishes are not
modeled.

For example, Reaction A.1 says that a molecule of species S1 disappears with con-
stant c1, while Reaction A.3 says that a molecule of species S2 converts into a
molecule of species S3 with constant c4.

Reaction A.2 is reversible. It says that two S1 molecules combine to form one S2

molecule with constant c2 and that a S2 molecule decays into two S1 molecules with
constant c3.

S1
c1→ ∅ (A.1)

2S1
c2

c3
S2 (A.2)

S2
c4→ S3 (A.3)

In conventional macroscopic chemistry, we are used to the amount of the reactants
and products being interpreted in terms of concentrations, and the constants being
rate constants; in mesoscopic kinetics, however, the amounts are molecular copy
numbers (the number of molecules of that species in the system) and the constants
are probability rate constants, which, when multiplied by the number of possible
collisions of the reactant molecules, yield reaction propensities.

A common convention is to denote the copy number of species S1 by s1, so the
propensity of ReactionA.1 may be written c1s1, while the propensity of the “forward”
(top) Reaction A.2 is c2s1(s1 − 1), since if two molecules of S1 collide, they have
only s1 − 1 other molecules to collide with.

In many cases, what are described above as propensity “constants” can, in fact,
be complex functions of any species in the model, since not all reactions (consider
catalysis, for example) are dependent purely on the number of molecules (or, in the
macroscopic case, concentrations) of reactants present. See Appendix A.3 for an
example of a system with explicit, more complex, propensity functions.

1The opposite end from the head, the “tail”.

39

A.2 Decay Dimerisation Reaction

The decay dimerisation (DD) model is non-stiff, and the simplest model system
used, with 3 species and 4 reaction channels.

It describes a monomer, S1 that is both rapidly decaying and dimerising reversibly
into an unstable dimer, S2, which, in turn, slowly isomerises into a stable dimer, S3.

From [19] and [10].

A.2.1 Reaction Equations

S1
c1→ ∅

2S1

c2
2

c3
S2

S2
c4→ S3

A.2.2 Model Parameters

Parameter Value

c1 1.0
c2 0.002
c3 0.5
c4 0.04

Table A.1: Model Parameters for Decay Dimerisation [19, p.15]

A.2.3 Initial Copy Numbers

These are the usual copy numbers used in numerical experiments, but note that s1
is 105 in Section 6.1.1.

Species Copy Number

s1 10000
s2 0
s3 0

Table A.2: Model Parameters for Decay Dimerisation [19, p.15]

40

A.3 Metabolite-Enzyme

The metabolite-enzyme (ME) model is a simple, slightly stiff, generic model of 4
species — two metabolites, X and Y , whose production is controlled by correspond-
ing enzymes, EX and EY — with 9 reaction channels.

A.3.1 Reaction Equations

∅
k1ex
1+ x

ki−→ X ∅

k2ey

1+
y
ki−→ Y

X + Y
kxy−→ ∅ X

µx−→ ∅

Y
µy−→ ∅ ∅

k3
1+ x

kr−→ EX

∅
k4

1+
y
kr−→ EY EX

µex−→ ∅
EY

µey−→ ∅

A.3.2 Model Parameters

Parameter Value

k 0.001
ki 0.001
kr 30
k1 0.3
k2 0.3
k3 0.02
k4 0.02
µ 0.002

Table A.3: Model Parameters for Metabolite-Enzyme

A.3.3 Initial Copy Numbers

Species Copy Number Description

X 10 Metabolite X
Y 10 Metabolite Y
ex 10 Enzyme X
ey 10 Enzyme Y

Table A.4: Initial Conditions for Metabolite-Enzyme

41

A.4 E. Coli Heat-shock Reaction

The heat-shock reaction of E. coli (HSR) is a very stiff system of 28 species and 61
reaction channels which models the response of E. coli to heat stress. At elevated
temperatures, proteins begin to denature; the response is the activation of several
genes that produce chaperone enzymes, some of which help to refold denaturing
proteins, whilst others help to degrade denatured proteins [24, 2].

A.4.1 Reaction Equations

S1 + S2
c1

c2
S3

S1 + S4
c3

c4
S5

S1 + S6
c5

c6
S7

S4 + S14
c7

c8
S15

S14 + S16
c9

c10

S17

S3 + S6
c11

c12

S8

S5 + S6
c13

c14

S9

S3 + S10
c15

c16

S12

S5 + S11
c17

c18

S13

S15 + S18
c19

c20

S19

∅
c21s13

c22

S22

∅
c23s22

c24

S14

S17
c25→ S16

S15
c26→ S4

S19
c27→ S4 + S18

S28
c28→ S4 + S27

∅
c29s13

c30

S23

∅
c31s23

c32

S18

S19
c33→ S15

42

∅
c34s12

c35

S25

∅
c36s25

c37

S4

S19
c38→ S14 + S18

S21
c39→ S20

S28
c40→ S14 + S27

∅
c41s13

c42

S24

∅
c43s24

c44

S20

S21
c45→ S4

S4 + S20
c46

c47

S21

∅
c48s13

c49

S26

∅
c50s26

c51

S27

S28
c52→ S15

S15 + S27
c53

c54

S28

S5
c55→ S1

S13
c56→ S1 + S11

S9
c57→ S7

S15
c58→ S14

S19
c59→ S14 + S18

S20
c60→ S14 + S27

S21
c61→ S20

43

A.4.2 Model Parameters

Parameter Value Parameter Value

c1 2.54 c2 1
c3 0.254 c4 1
c5 0.0254 c6 10
c7 254 c8 10000
c9 0.000254 c10 0.01
c11 0.000254 c12 1
c13 0.000254 c14 1
c15 2.54 c16 1
c17 2540 c18 1000
c19 0.0254 c20 1
c21 6.62 c22 0.5
c23 20 c24 0.03
c25 0.03 c26 0.03
c27 0.03 c28 0.03
c29 1.67 c30 0.5
c31 20 c32 0.03
c33 0.03 c34 0.00625
c35 0.5 c36 7
c37 0.03 c38 3
c39 0.7 c40 0.5
c41 1 c42 0.5
c43 20 c44 0.03
c45 0.03 c46 2.54
c47 10000 c48 0.43333
c49 0.5 c50 20
c51 0.03 c52 0.03
c53 2.54 c54 10000
c55 0.03 c56 0.03
c57 0.03 c58 0.03
c59 0.03 c60 0.03
c61 0.03

Table A.6: Model Parameters for E. Coli Heat-shock Reaction

44

A.4.3 Initial Copy Numbers

Species Copy Number

s1 0
s2 0
s3 0
s4 0
s5 1
s6 4645670
s7 1324
s8 80
s9 16
s10 3413
s11 29
s12 584
s13 1
s14 22
s15 0
s16 171440
s17 9150
s18 2280
s19 6
s20 596
s21 0
s22 13
s23 3
s24 3
s25 7
s26 0
s27 260
s28 0

Table A.8: Initial Conditions for E. Coli Heat-shock Reaction

A.5 Circadian Rhythm

The circadian rhythm is a well-known cellular phenomenon, also known as the “bi-
ological clock”, and modeled by the Vilar oscillator [27][1]. The version of the Vilar
oscillator used here it is a system of 9 species and 16 reaction channels.

45

A.5.1 Reaction Equations

A+R
arγC−→ C A

aδA−→ ∅
C

cδA−→ R R
rδR−→ ∅

A+DA
adAγA−→ D′A D′A

d′
AθA−→ A+DA

∅ dAαA−→ MA ∅
d′
Aα

′
A−→ MA

MA

mAδMA−→ ∅ ∅ mAβA−→ A

A+DR
adRγR−→ D′R D′R

d′
RθR−→ A+DR

∅ dRαR−→ MR ∅
d′
Rα

′
R−→ MR

MR

mRδMR−→ ∅ ∅ mRβR−→ R

A.5.2 Model Parameters

Parameter Value

γC 2.0
δA 1
δR 0.2
γA 1
θA 50
αA 50
α′A 500
δMA

10
βA 50
γR 1
θR 100
αR 0.01
α′R 50
δMR

0.5
βR 5

Table A.9: Model Parameters for Circadian Rhythm

46

A.5.3 Initial Copy Numbers

Species Copy Number Description

Da 10 Gene A
D′a 10 Gene A with bound activator
Ma 10 mRNA A
Dr 10 Gene R
D′r 10 Gene R with bound activator
Mr 10 mRNA R
C 10 Complex C
A 10 Activator A
R 10 Repressor R

Table A.10: Initial Conditions for Circadian Rhythm

47

48

B. CellMC User Guide

B.1 Overview

CellMC is a set of XSL-T stylesheets, C source code, and a wrapper around gcc
which converts an SSA model, expressed as an SBML file, into optimised C code
and thence into an executable for the host platform. CellMC does not support
cross-compilation.

For each platform, the default behaviour is that which was found to be fastest in
testing, although some alternatives exist for debugging and tuning.

B.2 Command-line Options, Switches, and Flags

The syntax below follows the common convention that optional arguments to an
option are shown in braces, [...], and mandatory arguments in angle-brackets,
<...>; within these arguments, free-form strings are indicated by a suggestive label
in italics; and strict alternatives are shown between vertical bars, read as “or”, with
the default shown in italics. If a command-line option lacks such an indication of
the format of its argument, then it is a flag taking no argument.

Command-line arguments have, at least, a long form with a leading double-hyphen,
e.g. --long-option-name, and, often, also a short form with a single hyphen, e.g.
-l. Short option flags may be globbed, e.g. -mv is equivalent to -m -v. It is an
error to begin a long option with a single hyphen. Options marked with an asterisk
are experimental or developmental features which may produce unexpected results
on some or all platforms.

Options that modify the runtime behaviour of CellMC itself without
affecting the generated program (all platforms):

-h|--help print usage summary and exit.

-V|--version print CellMC version and exit.

-o|--output <filename> default a.out (as gcc).

-v|--verbose make CellMC more verbose; also passed to gcc, which produces a lot
of output.

--save-temps save temporary files; also passed to gcc.

--xslfile <filename> override internal choice of XSL-T file ∗

--no-valid don’t validate SBML model; useful for some old versions of libxml2 that
have error-prone validation.

49

Options that affect the generated program:

-p|--profile generate a profiling (Pass 1) binary.

-d|--double use double-precision (default single) ∗

-g|--gcc-debug [label] pass -g flag (include debugging symbols) to gcc (implies
--no-strip)

-O|--gcc-optim [0|1|2|3|s] specify -O flag (optimisation level) to gcc.

--no-strip don’t strip executable; by default, executables are stripped to reduce
size.

IA32-specific options (all affect generated program):

-m|--multicore generate pthreads code for multi-core PCs.

-l|--log <asm|lib|fpu> select log() implementation. ∗

-p|--lpr <none|semi|full> select LPR method. ∗

-r|--rng <rsmt|stdlib> select PRNG implementation. ∗

--march <gcc-march-label> pass machine architecture label to gcc.

Cell/BE options (all affect generated program):

-M|--mpi generate MPI code for a cluster (requires MPI to be installed).

-s|--sso turn SIMD slot optimization on (default off) ∗

B.3 Output Metadata Description

It was found during development that it was extremely easy to lose track, or simply
forget, exactly what version of models and what version of, and compilations flags
for, CellMC had been used. Accordingly, CellMC records extensive metadata about
the simulation including the version information, options, flags, and command-lines
used to invoke both CellMC and the executable model. To facilitate speed compar-
isons, data about timing and trajectories is also included. Every line of metadata
begins with an octothorpe1; raw data can be extracted with a simple shell command,
e.g.:

grep -v ’^#’ foo.in > foo.out

or
1Also known as the “hash”, “sharp”, or “pound” symbol.

50

sed -n ’/^[^#]/,$p’ foo.in > foo.out

The metadata is intended to be self-explanatory, so only a few fields require expla-
nation. Line numbers refer to the example header following the descriptions.

The model label (line 7) is extracted from the SBML file compiled to produce the
program. If the model has an annotation element including a <svn:id> element
(see the examples in the distribution), its contents are used after ‘$’ characters are
converted to ‘%’s (to prevent the information being lost if the results are themselves
stored in Subversion); otherwise, the name attribute of the model element is used.

Often, the number of trajectories calculated is more than the number requested
because the number is rounded up (to 4 times the number of cores) for simpler load
division. If the number of trajectories calculated differs from the number requested,
that is recorded in an additional line (after 19).

Because of SIMD-isation, there are always more reactions executed (absolute total,
line 23) than actually contribute to a trajectory (contributing total, line 25) be-
cause execution continues in all 4 SIMD slots even when some have reached their
final times. The absolute and effective speeds (lines 24 and 26) are based on the
absolute and contributing reaction counts respectively. The number of reactions
per trajectory (27), a simple average included as a check, is based on the number
of contributing reactions and the number of trajectories computed. The reaction
simulation overhead (28) is the percentage of the absolute total reactions that are
non-contributing.

51

1 # Simulation start time = 2009-04-15 07:53:08

2 # Simulation end time = 2009-04-15 07:53:09

3 # Executable name = a.out

4 # Executable invoked with command = ./foo -o hsr-opt.out 1000 1000

5 # Built with CellMC version = 0.2.5

6 # Executable built with command = ./cellmc me-opt.xml

7 # Model label = %Id: me-opt.xml 39 ... %

8 # FP precision = single

9 # log() implementation = asm

10 # PRNG = rsmt

11 # Propensity recalculation limiting = semi

12 # SIMD slot optimization = on

13 # Profiling = off

14 # Built with multi-threading = off

15 # Built with MPI support = (not available)

16 # PRNG master seed = 0xedaec6b1

17 # Number of reactions in model = 9

18 # Number of species in model = 4

19 # Number of trajectories requested = 1000

20 # Simulated time = 1000.000000

21 # Elapsed simulation time (seconds) = 1.042

22 # Effective time per trajectory (s) = 0.001s

23 # Absolute total reactions executed = 3984032

24 # Absolute simulation speed (Rps) = 3824912

25 # Contributing total reactions = 3979412

26 # Effective simulation speed (Rps) = 3820476

27 # Reactions per trajectory (RpT) = 3979

28 # Reaction sim. overhead (%) = 0.12

B.4 Example Operation

Compiling from an SBML model in me-opt.xml with CellMC:

emmet@esprit:~/WIP/cellmc/src$./cellmc -o me me-opt.xml

emmet@esprit:~/WIP/cellmc/src$

Compiling an unordered model in hsr.xml with CellMC:

emmet@esprit:~/WIP/cellmc/src$./cellmc -po phsr hsr.xml

emmet@esprit:~/WIP/cellmc/src$./phsr -o hsr.xsl 4 50

emmet@esprit:~/WIP/cellmc/src$ xsltproc -o hsr-opt.xml hsr.xsl hsr.xml

emmet@esprit:~/WIP/cellmc/src$./cellmc -mo hsr hsr-opt.xml

emmet@esprit:~/WIP/cellmc/src$

52

The executables produced by CellMC also produce help when invoked:

emmet@esprit:~/WIP/cellmc/src$./hsr

USAGE:

hsr [options] <number of trajectories> <stop time>

OPTIONS:

-h shows this help text.

-o <file> print output to file (instead of stdout).

-s <value> sets PRNG seed to ’value’.

-c <n> use ’n’ compute threads (mnemonic: ’c’=’cores’).

-i suppress info header in results (mnemonic: ’-i’=’info ...

emmet@esprit:~/WIP/cellmc/src$

CellMC invoked without arguments produces help:

emmet@esprit:~/WIP/cellmc/src$./cellmc

USAGE:

cellmc [options] sbmlfile

OPTIONS:

Options that affect cellmc behaviour, but don’t affect the

generated program

-h|--help show this help text

-V|--version show version information and exit

-v|--verbose make cellmc more verbose

-o|--output <filename> set output filename (default: ’a.out’)

--xslfile <filename> override internal choice of XSL-T file

--save-temps save temporary files (as gcc)

--no-validation don’t validate SBML model

Options that affect the generated program:

-d|--double use double-precision (default: single)

-p|--profile generate profiling code

-g|--gcc-debug [lbl] pass -g flag (debugging symbols) to gcc

(implies --no-strip)

-O|--gcc-optim [0|1|2|3|s] pass -O flag (optimization level) to gcc

--no-strip don’t strip executable

Options specific to this platform (IA32)

-m|--multicore generate pthreads code for multiproce ...

-l|--log <asm|lib|fpu> select log() implementation (default: ...

-r|--lpr <none|semi|full> select LPR method (default: ’semi’)

-n|--rng <rsmt|stdlib> select PRNG implementation (default: ...

--march <gcc-march-label> pass machine architecture label to gcc

emmet@esprit:~/WIP/cellmc/src$

53

